Celebrating Green Victories!

 

Clovers
Image source: Synthesio.com

 

In honor of St. Patrick’s Day and the “wearing of the green”, let’s take a look at some recent positive news about the environment:

Repurposing Plastics – On March 12th, 2018, Thomas Reuters Foundation revealed an encouraging story about Watamu, Kenya, a small Indian Ocean Resort village whose new mission is to take-on plastic waste. The country banned the sale and use of plastic bags in February and the environmental ministry is planning a plastic bottle buy-back program starting in April. Some of interesting and innovative things people have been creating with plastic refuse run the gamut from fences to furniture to houses, and even a plastic ship to raise awareness about recycling plastic. See for yourself here.

From Farmland to Forests – The Jackson Hole News and Guide reported to the Associated Press on March 13th, 2018 that more than 1.5 square miles of remote ranchland from the former Upper Gros Ventre River Ranch is being added to the Bridger-Teton National Forest, completing the largest land transfer to that national forest in years. The ranchland was donated it to the Trust for Public Land at the end of 2014 by former Democratic U.S. Sen. Herb Kohl. Money from the transfer ($3 million) will be put in a “land action fund” to support the protection of open space in Jackson Hole.

Getting the Lead – And More – Out!Science Daily revealed on March 14, 2018, that researchers from Ecole Polytechnique Fédérale de Lausanne, and colleagues from University of California Berkeley, and Lawrence Berkeley National Laboratory may have found a commercially viable and environmentally safe way to remove heavy metals from municipal drinking water “in seconds.” The solution uses metal organic frameworks (MOFs) combined with a polymer to “quickly and selectively remove high amounts of heavy metals like lead and mercury from real-world water samples.” Samples with high concentrations of lead were reduced to 2 parts-per-billion, a level acceptable by both the EPA and the World Health Organization for drinking water.

Oklahoma Finally Faces Facts on FrackingReuters reported on February 27th, 2018 that the Oklahoma Corporate Commission established new rules to help reduce the risk of earthquakes at fracking sites in the central and southern part of the state. Fracking and related underground injection of fracking wastewaters have been repeatedly shown to cause earthquakes. Data from the Oklahoma Geological Survey revealed in 2015 there were 903 magnitude 3.0 or higher earthquakes versus just 41 of that intensity five years earlier – that’s an increase of 2,200%. Maybe it really is a good thing Scott Pruitt is in Washington instead of his home state… Good for Oklahoma, anyways.

If you know of other cool, green happenings going on, please let me know!

Ocean Blues? Microplastics and Megafauna

mantaray
Feeding manta with plastic in water, Indonesia. Photo Source: Elitza Germanov, Marine Megafauna Foundation

The top environmental news this week?  The effect of microplastics on large filter-feeding sea creatures such as manta-rays, whale sharks, and baleen whales.

A recently published study in the journal Trends in Ecology & Evolution (Trends) looked at how filter-feeding megafauna may be impacted by exposure to microplastics and related toxins. The results are not encouraging.

Trends researchers note that it’s difficult to measure the exact quantities of microplastics megafauna intake. The best way to accurately determine the amount ingested is by examining stomach contents. Since many of these creatures are on by the International Union for Conservation of Nature’s (IUCN) list as globally threatened species, scientists will not harvest them.

However, investigators have developed other methods to determine microplastic intake in these creatures. Based upon these other approaches, it is estimated that “whale sharks may be ingesting 171 items on a daily basis” and the BBC reported, “fin whales in the Mediterranean Sea swallow about 2,000 microplastic particles per day.”

The Trends investigators are concerned that swallowing the indigestible plastic particles may “block nutrient absorption and cause damage to the digestive tract of animals” and that long-term exposure may “alter biological processes, leading to altered growth, development, and reproduction, including reduced fertility.”  Long-term exposure is especially disconcerting since these long-lived animals have few offspring throughout their life.

The ultimate goal of the Trends researchers is to raise awareness in communities, governments, and industry so that the impact of microplastic pollution can be lessened. They are hoping to “change behaviors around the production, management, and use of plastics.”

The message may be catching on.

In the U.S. and abroad, there has been a steady increase in concern over plastic consumption and disposal. Many cities and states are banning the use of plastic bags or encouraging consumers to bring their own reusable bags. Forester Research noted a campaign to ban plastic straws in coastal cities both in the U.S. and other countries.

The United Kingdom and the United States have banned the addition of microbeads and microplastics to cosmetics and personal care products. The Guardian reported in early January that the European Union is “waging war against plastic waste” with a goal of having “every piece of packaging on the continent (be) reusable or recyclable by 2030.” A very noble goal indeed.

Still, legal changes can only go so far to help protect our planet as well as ourselves. As long as consumer demand is strong, manufacturers will continue to meet the demand. It’s ultimately up to us to change our behavior and reduce, reuse, and recycle.

What is one thing you can do this week to help reduce our dependence upon plastics?

Downsides to Desalination

Throwing salt over your shoulder after you spill some, is a ritual that originated in ancient Rome. Back then, salt was a very precious and expensive commodity. To carelessly lose any was considered a bad omen. To rectify this terrible error, you needed to lose some of what you valued most. Times have changed and now we have an overabundance of salt.  Instead of throwing it over our shoulder to make up for misdeeds, we may be looking over our shoulder to make sure were are not caught dumping it.

SaltAs water quality continues to diminish around the world, advocates are promoting desalination as a technological solution. They point to the earth’s abundant water supplies, such as the ocean or brackish aquifers, which desalination can treat to provide another source of drinking water. Yet, these advocates tend to gloss over the environmental impacts of the concentrated salt waste that is produced.

Desalination works by removing salts and minerals from water supplies, generally using sophisticated membrane technology which is very energy intensive and quite costly. This technique not only results in producing freshwater, it also generates a concentrated brine which needs to be disposed of. In some ways, you could say desalination is just another version of “robbing Peter to pay Paul.” In the end, you still have the problem of too much salt.

Unfortunately, there is no sound way to handle the concentrated brine waste produced. Currently, many countries with coastal desalination facilities release the brine waste back into the ocean. A practice which marine biologists warn is taking a heavy toll on the ocean’s health.

In a Scientific American online article, Jeffrey Graham of the Scripps Institute of Oceanography’s Center for Marine Biotechnology and Biomedicine, noted that the highly concentrated salt waste from desalination processes “can wreak havoc on marine ecosystems.” He expressed concern that “the disappearance of some organisms from discharge areas may be related to the salty outflow.”

The same article discusses how the seawater intake process can also be detrimental to biodiversity. Desalination plants essentially vacuum up sea water through intake pipes and “inadvertently kill millions of plankton, fish eggs, fish larvae and other microbial organisms that constitute the base layer of the marine food chain.” This reduces the amount of food available for larger ocean creatures.

Some desalination supporters suggest injecting the concentrated brine deep into the ground, where it, presumably, will do no harm. However, Menachem Elimelech, a Professor at the Yale University School of Engineering and Applied Science, doesn’t believe that solution would be sustainable. In a Deutsche Wells online article, Elimelech states “If you have many many desalination plants injecting this salt into the groundwater, it may affect the groundwater 50, 100 or 500 years from now.”

Being a water resources junkie, I couldn’t agree more. Water doesn’t stay in one place and it’s impossible for us to know the exact nature of any formation that the liquid waste is pumped into. Fractures, fissures, and faults might be unseen pathways for this solution to eventually move into and contaminate productive aquifers.  Why take the chance?

Also, consider the intake material from the ocean is not just water and salt but also organic matter, bacteria, and other materials.  All these substances must be treated and removed before the sea water is run through the reverse osmosis membranes. William Phillip from the University of Notre Dame in Indiana, points out in the Deutsche Wells article that “In order to keep the membranes from clogging up with particles, the sea water has to be treated with chemicals before it is desalinated. These chemicals are then poured back into the sea.”

As the membranes do their job of removing minerals and salts, they gradually get clogged up, making them less efficient. This is where desalination starts to get expensive. It takes a lot of energy to keep pushing water molecules through the reverse osmosis membranes especially when they are blocked by other elements.

Desalination also produces three times the CO2 emissions of conventional water treatment systems. In a world struggling to come to its senses over climate change, adding more greenhouse gases to the atmosphere may not be the best solution. In a way, it may be like rubbing salt into our collective wounds.

The Highs and Lows of Growing Weed

Currently, 30 states and the District of Columbia have legalized forms of marijuana and more states are likely to follow. Marijuana sales have been on fire. In 2017, sales were expected to reach $9.7 billion, and analysts are predicting sales of $24.5 billion by 2021, as new states enter the market. Yet, behind the “green gold rush”, an insidious story is unfolding. One fostered by the green and the greed which comes with it. Ultimately one that kills.

MJ
Image Source: Getty Images

It’s well known that Mexican drug cartels are growing weed in remote locations of U.S. national forests. California has been hit the hardest by this illegal activity. As reported by Reuter’s, there are an estimated 50,000 grow sites in California which is believed to comprise about 90% of all illegal pot farming in the United States.  Even with the state’s recent legalization of marijuana, officials expect only about 16,000 of these growers to seek commercial cultivation licenses.

Lack of law enforcement in these vast, remote areas is exploited by growers. The illegal operators are emboldened by limited oversight and will defend their turf if they feel threatened. The Atlantic online article noting that “Growers have followed, detained, threatened, pursued, and shot at officers and civilians, including scientists and field techs. One Forest Service biologist who stumbled upon a grow site in Sequoia National Forest was chased for close to an hour by armed growers.”

Not only are these areas unsafe for any unsuspecting soul rambling about, they are often havens for extremely toxic chemicals used as pesticides or rodenticides. Reuter’s published an online article which details how growers are using “fertilizers and pesticides long restricted or banned in the United States, including carbofuran and zinc phosphide.”  These chemicals are so toxic that enforcement officials have been hospitalized after touching plants treated with these chemicals or handling equipment used in their application. Now imagine smoking or ingesting some of that.

Other lethal chemicals found on remote grow sites include aluminum phosphide, for killing rodents and insects; bromadiolone, a restricted-use neurotoxic rodenticide; brodifacoum, an anticoagulant rodenticide; and malathion, an organophosphate insecticide that’s been compared to a watered-down version of the nerve agent sarin.

There is concern that some of these toxin-laden plants are infiltrating legalized medicinal marijuana markets, potentially impacting people with serious health conditions like AIDS or cancer. The Atlantic article noted that “studies and investigations in Colorado and Oregon have found pesticides on marijuana in legal dispensaries, including in products that were supposedly certified pesticide-free.”

Unsuspecting wildlife has taken the greatest hit. In addition to the rodents targeted by growers, the toxic materials have worked their way up the food chain. Researchers at the University of California – Davis revealed that tissue samples from spotted owls and barred owls tested positive for rat poison.  This is a significant concern because the northern spotted owls are listed as a threatened species under federal and state Endangered Species acts.

Other animals found dead at grow sites include Pacific fishers, bears, vultures, foxes, and deer; presumably from ingesting one or more of these chemicals. There are even concerns about cattle being poisoned by marijuana farms. These illicit activities also impact and kill aquatic organisms; including fish.

Another pressing concern for California is the impact on local water supplies. California just came out of a 15-year drought. Conditions got so bad in 2015 that Governor Jerry Brown imposed mandatory water reductions of 25% on residents, businesses, and farms. The restrictions continued until March of 2017.

Marijuana is known to be a high-water crop. State officials suggest that growers are watering each plant with about 6 gallons of water per day. Multiply that by 50,000 grow sites and thousands of plants per site and you have monumental water use. As reported in The Atlantic, “the 1.1 million illegal pot plants removed in California in 2016 would have used somewhere around 1.3 billion gallons of water—as much as 10,000 average California households do in a year.” This water use figure becomes even more daunting when you consider enforcement officials consider that 50,000 grow sites state-wide is likely to be a low estimate.

To help regulate excessive water use for cannabis growers, the California State Water Board has established specific “Cannabis Cultivation Water Rights” to help protect stream flows, wetlands, aquatic habitats and even groundwater from negative impacts of cannabis cultivation. These regulations will be applied to legal cultivators of weed but it is extremely unlikely any illegal grower will even acknowledge such regulations.

Illegal growers are only interested in a successful harvest and not in helping the environment. Several reports have verified the intentional destruction of wetland areas, extensive diversion of stream flows, excessive pumping of groundwater as well as toxic chemicals leaching into soils and waterways, potentially impacting downstream users.

Unfortunately, these destructive practices are likely to continue as long as there is a demand for illegal marijuana. Some advocates suggest that legalization in all states will stop or greatly reduce illegal cultivation since the industry will become highly regulated. Until that happens, conditions are likely to remain the same.

Right now, the best thing that legal marijuana users can do for themselves and the environment is to find out where and how their pot is grown. Any legitimate dispensary should be willing to provide that information. If they can’t, shop somewhere else. This issue is too important to go up in smoke.

“One Word…Plastics”

You may remember this iconic line offered as career advice to young Benjamin Braddock in the 1967 movie The Graduate. Its delivery seemed to foreshadow a revolution in convenience which has clearly come to pass. Everywhere we look we see plastics – in ours homes, in our cars, in our businesses and certainly in the environment. Unfortunately, this innovation in convenience has come at a high price.

Plastic Waste
Man canoeing in a sea of plastics. Photo source: unknown.

The impact of plastics on our environment is shocking. In 1997, racing boat Captain Charles Moore was the first to discover the existence of the Great Pacific Garbage Patch – a collection of marine debris (mostly plastics) spanning from the west coast of America to Japan!

The size of the Garbage Patch is so large that Dianna Parker, of the National Ocean and Atmospheric Administration’s Marine Debris Program, stated NOAA “has estimated that it would take 67 ships one year to clean up less than one percent of the North Pacific Ocean.” It’s an international pollution problem that is too big for any one country to address by itself, so it repeatedly gets placed on the back burner.

Plastics don’t biodegrade, they just break down into tinier and tinier particles, called microplastics, which impact global food webs. They collect near the surface of the oceans, blocking sunlight from reaching plankton and algae, the primary producers of the ocean. This means there’s less food for primary consumers, like turtles and fish which results in less food for larger consumers or predators, like sharks and tuna. This ultimately could mean less food for humans.

It’s not just small pieces of plastic that are a problem. National Geographic website reveals “loggerhead sea turtles often mistake plastic bags for jellies, their favorite food. Albatrosses mistake plastic resin pellets for fish eggs and feed them to chicks, which die of starvation or ruptured organs.” Larger marine life, like seals, get entangled in abandoned plastic fishing nets and drown.

Seal in plastic
Photo Credit: See Common Dreams. “A seal trapped in plastic pollution. Environmental advocates are concerned that a rise in plastics production will bring the world’s oceans to a state of “near-permanent” pollution.” (Photo: Nels Israelson/Flickr/cc)

Plastics are not just in the ocean. Research by Orb Media, with assistance from the State University of New York at Fredonia and the University of Minnesota School of Public Health, has shown that every major water source in the world now has microplastics in it. They are also in our drinking water, including some of the top U.S. bottled water brands. Specifically, they found more than 80 percent of the samples they collected on five continents tested positive for the presence of plastic fibers. Notably, the “US had the highest levels of contamination at 94.4 percent”.

Orb Media - microparticles
Photo Credit: Orb Media. Dyed laboratory filter paper highlights plastic fibers.  See Orb Media online report.

Scarier still is some of these microparticles are small enough to move through our bodies and travel to our lymph nodes.  Forester Network reported some researchers acknowledge that “chemicals from plastics are a constant part of our daily diet.” Research professor, Scott Belcher, PhD, shared with Orb Media “…these plastics are breaking down and leaching chemicals, including endocrine-disrupting plasticizers like BPA or phthalates, flame retardants, and even toxic heavy metals that are all absorbed into our diets and bodies.”

Even more disconcerting is how pervasive plastic is. Chris Tyree, a journalist with Orb Media, contends “the shear amount (of plastic) we are consuming is mind boggling. We’ve practically created more plastic in the last decade than in the last century. If plastic were a country, it would have the world’s 20th largest economy.”

Regardless of all the issues with plastic, its market is growing at a rapid pace. Common Dreams recently reported that various fossil fuel companies, including Exxon and Shell, “have poured more than $180 billion into the creation of plastics facilities that are expected to create a 40 percent rise in production of the material over the next decade.”  That’s a massive increase in a very short amount of time.

The prognosis for our continued plastic dependence looks bleak. Yet, there’s always room for hope.  Major changes in the way society functions have resulted from a few brave souls stepping forward to become way-showers for others.  Could you be one of them?

Is Water Service a Privilege?

A disturbing trend involving access to water is emerging in the United States. People in communities around the country are struggling to stay connected to their local water services, primarily due to large price increases. Lower-income households are being hit the hardest and unlike with other utilities, financial assistance is usually not available. This begs the question of whether access to water should be considered a moral obligation or a privilege?faucet

Certainly, in our country’s early history, access to water was far from a God given right. Early pioneers had to walk to creeks, streams or rivers to get the water they needed for daily life. Over time, technology in the form of windmills and wells and then electric pumps and wells, made getting water from the ground easier and easier. Now our country has a vast system of dams, reservoirs, canals, wells and pipes to deliver water precisely where and when it is needed.

In this modern era of seemingly abundant water, should access be limited to only those who can pay for it? Our gut reaction may be ‘no’ but our wallets may be saying something else.

There are several reasons for the substantial increase in water service costs. In December 2017, Michigan State University (MSU) published research concluding the main reasons behind rising water rates include aging infrastructure, shrinking populations in urban areas and climate change.

Other factors contributing to burgeoning water prices are mentioned in a 2017 Environmental Defense Fund (EDF) study. This study discusses the need to recover costs due to declining demand (often a result of conservation programs) as well as rising operations and maintenance costs, all of which contribute to higher rates.

A loss of government funding hasn’t helped the situation. As noted in a University of Pennsylvania online article, Congress switched from offering grants which covered up to 75% of water infrastructure, to offering loans. This change means that local communities are now fully responsible for their water projects and are expected to repay the loans. Due to all these issues, cities and towns have raised rates to cover costs.

Exactly how to handle increasing service costs is a compelling conundrum. In 2016, the Unitarian Universalist Service Committee (UUSC) highlighted the growing problem of water unaffordability in the United States. The UUSC report notes the “cost of household water services has risen 40% from 2010 to 2015” in some major U.S. cities.  Couple this with MSU research projections estimating  that “the number of U.S. households unable to afford water could triple in five years, to nearly 36 percent” and you can quickly see the significance of the problem.

Rising rates combined with inflation have crippled lower-income households. The UUSC report notes that in “some communities’ water and sanitation services command 4–19% of monthly household income, well beyond what could be considered affordable” for people in the lowest 20% income bracket. Internationally, its agreed that expenses for water and sewer services should not exceed between 2-5% of household income.

As troubling as all this data is, the crux of the problem may lie in the ever-widening gap between the wealthy and the poor in this country. As reported in a March 22, 2016 Circle of Blue online article, the Center on Budget and Policy Priorities and the U.S. Census Bureau has data showing the income of the top 5% of American households increased 60% between 1980 and 2014 while the bottom 10% had incomes that fell over the same period.

As the old saying goes, “the poor get poorer and the rich get richer” and now there’s data to prove it.

 

The Price of Comfort

It may surprise some Americans to know that within our thriving, capitalist culture there is a growing segment of people living in third world conditions, with limited access to water and proper sanitation. What is not surprising is most of these people live in or on the edge of poverty. In an era of large corporate tax cuts and the slashing of social welfare programs, what will become of people without access to services most of us consider essential?

The prognoses for their return to normalcy looks bleak. Researchers at Michigan State University are projecting “the number of U.S. households unable to afford water could triple in five years, to nearly 36 percent”. The study concluded there are three main factors behind rising water rates: aging infrastructure, shrinking populations in urban areas and climate change.

Population trends show wealthier citizens moving out of inner cities and into the suburbs, leaving lower income residents to fend off the costs of large, aging infrastructures. Detroit is a perfect example of this type of mass exodus of wealth out of large cities.

In a March 22, 2016 online article, Circle of Blue reporter Brett Walton describes how after World War II, Detroit was the wealthiest city in America with a population of 1.8 million people, 80% of whom were white. Now its population is 680,000 (less than half of its peak) and 80% black with 40% percent of them living below the poverty level. Walton states “Those remaining have inherited the legacy costs of a city built for an absent 1 million people.”

Detroit is not the only city facing an uphill water pricing battle. A December 13, 2017 Circle of Blue online report featured a similar story for Philadelphia. The piece notes how the Philadelphia Water Department has about 86,000 household accounts, but one in five accounts have had their water shut off at least once over the last 5 years largely because of overdue bills. The culprit here is not only lack of money but also local policy.

The problems of aging infrastructure are well known among the utilities sector. This issue has been highlighted over the past several years in various technical media. The 2012 American Water Works Association (AWWA) report “Buried No Longer – Confronting America’s Water Infrastructure Challenge” revealed that “restoring existing water systems and expanding them to serve a growing population will cost at least $1 trillion over the next 25 years.”

In a 2016 American Society for Civil Engineers (ASCE) report, every American household is projected to lose $3,400 annually between 2016 and 2025 because of deteriorating infrastructure. Furthermore, the 2016 ASCE report contends the economic impact of America’s infrastructure issues could cost 2.5 million jobs by 2025 and up to 5.8 million jobs by 2040 if appropriate investments are not made.  Clearly, the time to act is now.

In addition to aging infrastructure and shrinking urban populations, climate change has been implicated in future water pricing trends. Scientists are increasingly finding evidence directly linking extreme weather events to human-caused climate change, suggesting that observed trends are likely to continue.

This is startling when you consider The National Oceanic Atmospheric Administration (NOAA) recently released a compilation of “U.S. Billion-Dollar Weather & Climate Disasters 1980-2017”. In the report they detail 218 weather and climate disasters that have occurred since 1980 in which overall damages/costs reached or exceeded $1 billion. As we have seen again this past year with Hurricanes Harvey, Irma and Maria, these large weather events are becoming more common. If this trend continues, we have to ask how much more can our economy take?

If our overall economy is at risk, what chance do our poorest citizens have of maintaining basic services? There must be a better way.